If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+24t-2.5=0
a = 4.9; b = 24; c = -2.5;
Δ = b2-4ac
Δ = 242-4·4.9·(-2.5)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-25}{2*4.9}=\frac{-49}{9.8} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+25}{2*4.9}=\frac{1}{9.8} =1/9.8 $
| 12=-2(2p-2) | | 24x+18)(17x+36)(10x+3=360 | | x=0.11749(0.1-x) | | 8x+21=x+56 | | -4m+13=22 | | k.6k=19.152 | | 8x-49=x-56 | | X+2(48-x)=48 | | 24g-14=-38 | | -7+5v=23 | | -3(5+x)=39 | | 1+3y=6y-0.2 | | 10j+36=6j | | 18b^2=2/18 | | 12x+9x+5x=180 | | 2y=40/24 | | 8(x+2)-3(x-4=6(x-7+8 | | 1/4x=1/2x+18 | | 2+1/3x=-4 | | 5(x+2)/4=2x-3 | | Y=-16x^2+64x+200 | | 4(x-2=3(x-3) | | 4(3+2x)8=92 | | 8(x-7)+5=-51 | | (10x-15)=90 | | 5=(45-n)/n | | (x+5)^2=14 | | 10x+-15=90 | | 5x+2-4x=7-19= | | 0=5t^2-30t | | 0=-5t^2+30 | | 36=4(4+x)-12 |